We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


Dear readers,

our online journals are moving. The new (and old) issues of all journals can be found at
In most cases you can log in there directly with your e-mail address and your current password. Otherwise we ask you to register again. Thank you very much.

Your Quintessence Publishing House
J Adhes Dent 22 (2020), No. 4     24. July 2020
J Adhes Dent 22 (2020), No. 4  (24.07.2020)

Page 409-414, doi:10.3290/j.jad.a44872, PubMed:32666067

Can Fiber-post Placement Reinforce Structurally Compromised Roots?
Josic, Uros / Radovic, Ivana / Juloski, Jelena / Beloica, Milos / Popovic, Miljana / Alil, Ana / Mandic, Jelena
Purpose: Immature teeth are characterized by short roots, thin root canal walls, and open apices, which makes them prone to fracture. The aim was to investigate whether fiber-post placement had an influence on the fracture resistance of endodontically treated immature teeth.

Materials and Methods: To simulate immature teeth, the apical third of 20 intact mandibular premolars was resected. After the access cavity was prepared, root canals and apices were enlarged. A 4-mm apical barrier was placed using calcium-silicate based material (Biodentine, Septodont). The teeth were then randomly assigned to two groups (n = 10). Root canals in group 1 were sealed using Acroseal (Septodont, France) and gutta-percha, followed by composite resin for the coronal restoration (Evetric, Ivoclar Vivadent). In group 2, fiber posts (FRC Postec Plus, Ivoclar Vivadent) were luted using self-adhesive composite cement (SpeedCEM Plus, Ivoclar Vivadent), followed by the same coronal restoration. The teeth were then subjected to fatigue and static load testing.

Results: The average loads (± SD) that led to tooth fracture were: 401.40 ± 296.83 N in group 1 and 636.20 ± 204.95 N in group 2. Unfavorable fractures were noted in 9 specimens from group 1 and in 7 specimens in group 2. No statistically significant difference in fracture resistance or fracture mode was found between the groups.

Conclusion: Fiber-post placement had no significant influence on the fracture resistance of endodontically treated immature teeth.

Keywords: endodontically treated teeth, fiber posts, fracture resistance, self-adhesive composite cement
fulltext (no access granted) Endnote-Export