We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry
Login:
username:

password:

Plattform:

Forgotten password?

Registration

J Adhes Dent 22 (2020), No. 3     29. May 2020
J Adhes Dent 22 (2020), No. 3  (29.05.2020)

Page 275-283, doi:10.3290/j.jad.a44551, PubMed:32435768


Repair Bond Strength of a CAD/CAM Nanoceramic Resin and Direct Composite Resin: Effect of Aging and Surface Conditioning Methods
Moura, Dayanne Monielle Duarte / Dal Piva, Amanda Maria de Oliveira / Januário, Ana Beatriz do Nascimento / Verissímo, Aretha Heitor / Bottino, Marco Antonio / Özcan, Mutlu / Souza, Rodrigo Othávio Assunção
Purpose: To evaluate the effect of surface conditioning methods and aging on the repair bond strength between resin composite and nanoceramic CAD/CAM resin.
Materials and Methods: Twenty-four blocks of nanoceramic CAD/CAM resin (NCR) (Lava Ultimate, 3M Oral Care) (10 x 5 x 2 mm3) and resin composite (Filtek Z350, 3M Oral Care) (RC) were made, embedded in acrylic resin, polished (#600, #800, #1200) and randomly divided into 8 groups (n = 12 each) according to surface conditioning methods (air abrasion with 30-μm CoJet [CJ] or air abrasion with 50-μm Al2O3 [AB]) and aging prior to repair (without aging, 24 h in water at 37°C; with aging 6 months in water at 37°C). The blocks were air abraded (20 s, 2.5 bar, 10 mm) using a standardized device. A layer of adhesive resin (Scotchbond Universal) was applied (20 s) and photopolymerized for 20 s. RC cylinders (Ø = 2 mm; h = 2 mm) were then bonded to the NCR substrates using a Teflon matrix and photopolymerized for 40 s. All specimens were thermocycled (10,000 cycles, 5°C-55°C) and submitted to the shear bond test (50 kgf, 0.5 mm/min) to measure repair strength. Data (MPa) were analyzed using 3-way ANOVA and Tukey's test (α = 0.05). Failure analysis was performed using stereomicroscopy (20X).
Results: ANOVA revealed a significant effect of only the "material" factor (p = 0.00). The group NCR6mCJ presented bond strengths (29.37 ± 5.41) which were significantly higher than those of the NCR24hCJ (20.88 ± 5.74) and RC groups (p < 0.05). The group RC24hCJ (19.71 ± 4.21) presented the lowest shear bond strength (p < 0.05). Failure analysis revealed predominantly type B mixed failures (adhesive+cohesive in the substrate material) except for the groups NCR24hCJ and NCR6mAB, where mainly type C failure (adhesive+cohesive at the RC) was observed.
Conclusion: Air abrasion with Al2O3 particles or silicatization with CoJet followed by adhesive resin application are effective surface conditioning methods for the repair of nanoceramic CAD/CAM resin with resin composite.

Keywords: adhesion, nanoceramic resin, repair, resin composite, shear bond strength, surface conditioning