We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


J Adhes Dent 22 (2020), No. 1     14. Feb. 2020
J Adhes Dent 22 (2020), No. 1  (14.02.2020)

Page 99-105, doi:10.3290/j.jad.a43996, PubMed:32030380

Enamel and Dentin Bond Durability of Self-Adhesive Restorative Materials
Latta, Mark A. / Tsujimoto, Akimasa / Takamizawa, Toshiki / Barkmeier, Wayne W.
Purpose: To use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the durability of adhesion of self-adhesive restorative materials compared to composite resin bonded with a universal adhesive.
Materials and Methods: A universal adhesive, Prime & Bond Active, was used in self-etch mode to bond Z-100 composite resin to enamel and dentin. Three commercially available restorative materials and one experimental material with self-adhesive properties, Activa (A), Fuji II LC(F), and Equia Forte (E) and ASAR-MP4 (S) were also bonded to enamel and dentin. The SBS and SFS were determined for all materials. A staircase method was used to determine the SFS with 10 Hz frequency for 50,000 cycles or until failure occurred.
Results: On enamel, S generated similar values to the adhesive/composite materials and higher values than F, E, and A. On dentin, the composite/universal adhesive showed significantly higher SBS and SFS than the self-adhesive materials. S, F, and E generated higher values than A on dentin.
Conclusion: SBS and SFS values to enamel were similar for all materials tested except Activa which generated lower enamel values. On dentin surfaces, the self-adhesive materials generated similar SBS and SFS, with the exception of Activa. Those values were lower than that generated with composite resin and a universal adhesive.

Keywords: adhesion to dental hard tissues, fatigue testing, glass ionomers, bond durability, self-adhesive restoratives