We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry
Login:
username:

password:

Plattform:

Forgotten password?

Registration

J Adhes Dent 21 (2019), No. 4     23. Aug. 2019
J Adhes Dent 21 (2019), No. 4  (23.08.2019)

Page 373-381, doi:10.3290/j.jad.a43000, PubMed:31432052


Fatigue Failure Load of Resin-bonded Simplified Lithium Disilicate Glass-Ceramic Restorations: Effect of Ceramic Conditioning Methods
Tribst, João Paulo Mendes / Monteiro, Jaiane Bandoli / Venturini, Andressa Borin / Pereira, Gabriel Kalil Rocha / Bottino, Marco Antonio / Melo, Renata Marques de / Valandro, Luiz Felipe
Purpose: To evaluate the influence of different ceramic surface conditioning methods on the fatigue failure load of adhesively cemented simplified lithium-disilicate glass-ceramic restorations.
Materials and Methods: Ceramic (IPS e.max CAD, Ivoclar Vivadent) (Ø = 10 mm; thickness = 1.2 mm) and epoxy resin (Ø = 10 mm; thickness = 2.3 mm) disks were produced. The ceramic bonding surfaces were treated as follows: no etching and MPS-silane primer application only (MN); etching with 10% hydrofluoric acid (HF) for 20 s followed by primer application (HF + MN); HF + universal multimode adhesive application (HF + SU); etching with a one-step etching primer (ME&P); HF + primer + conventional adhesive (HF + MN + PAB). The epoxy resin disks were etched with 10% HF for 20 s followed by a coat of bonding agent (Multilink Primer A+B). Pairs of ceramic/epoxy resin disks were cemented with composite cement (Multilink N, Ivoclar Vivadent). The mean fatigue failure load was determined by the staircase method (100,000 cycles at 20 Hz frequency; initial load = 1435 N; step size = 72 N).
Results: ME&P had the highest fatigue failure load, followed by HF etched groups, while the non-etched condition (MN group) had the lowest. All samples presented radial cracks originating from defects at the conditioned ceramic surface (interface).
Conclusion: The simultaneous physicochemical conditioning with one-step self-etching ceramic primer promoted the best fatigue behavior results of the glass-ceramic restorations. It might indicate that this one-step conditioning reduces the number of flaws at the ceramic surface due to the slighter surface alterations than those produced by hydrofluoric acid etching, improving the fatigue behavior.

Keywords: glass ceramics, adhesive strategies, surface conditioning, primers, cementation, fatigue