We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


J Adhes Dent 20 (2018), No. 4     21. Sep. 2018
J Adhes Dent 20 (2018), No. 4  (21.09.2018)

Page 355-363, doi:10.3290/j.jad.a40987, PubMed:30206578

Effect of Composite Polymerization Stress and Placement Technique on Dentin Micropermeability of Class I Restorations
Fronza, Bruna Marin / Abuna, Gabriel Flores / Braga, Roberto Ruggiero / Rueggeberg, Frederick Allen / Giannini, Marcelo
Purpose: To investigate the effect of polymerization stress and insertion technique on dentin micropermeability of composites placed under pulpal pressure.
Materials and Methods: One high-viscosity conventional (HC; Filtek Supreme Ultra; 3M Oral), one low-viscosity conventional (LC; Filtek Supreme Ultra Flowable; 3M Oral), one high-viscosity bulk fill (HBF; Filtek Bulk Fill Restorative; 3M Oral), and one low-viscosity bulk fill (LBF; Filtek Bulk Fill Flowable; 3M Oral) composite were evaluated. Polymerization stress was measured with materials bonded to acrylic rods in a universal testing machine (n = 5). Class I preparations were made in extracted molars, in which tooth roots were removed and the pulpal chambers cleaned. Preparations were coupled to a hydraulic device to simulate pulpal pressure during composite placement (n = 5). Conventional composites were placed in two horizontal increments, while bulk fill materials were placed in one, single increment. Fluid flow rate (µl/min) and dentin micropermeability (%) were monitored. The restoration interface was observed under confocal laser scanning microscopy.
Results: LC and LBF presented statistically significant higher polymerization stress than HC and HBF. Fluid flow rate and dentin micropermeability did not differ among the groups. However, different patterns of fluid infiltration and interface integrity were observed. HC and HBF presented well-sealed surrounding margins with small gaps along the pulpal wall, while HBF demonstrated more cracks in the adhesive layer. LC and LBF restorations had larger gaps along all bonded interfaces.
Conclusion: No difference in polymerization stress was found when conventional and bulk fill composites with similar viscosities were compared. Neither polymerization stress or placement technique demonstrated a significant effect on dentin micropermeability. The incremental placement technique using a conventional, high-viscosity composite exhibited qualitatively better marginal integrity.

Keywords: composite, bulk-fill composites, incremental layering technique, shrinkage stress, dentin permeability, hybrid layer, adhesive