We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


J Adhes Dent 20 (2018), No. 2     19. June 2018
J Adhes Dent 20 (2018), No. 2  (19.06.2018)

Page 99-105, doi:10.3290/j.jad.a40303, PubMed:29675515

Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics
Prado, Mayara / Prochnow, Catina / Marchionatti, Ana Maria Estivalete / Baldissara, Paolo / Valandro, Luiz Felipe / Wandscher, Vinicius Felipe
Purpose: To evaluate the microshear bond strength (µSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime).
Materials and Methods: Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A µSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%).
Results: For both ceramic materials, HF+S resulted in higher mean µSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean µSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle.
Conclusions: Hydrofluoric acid + silane resulted in higher mean µSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

Keywords: bond strength, conditioning, contact angle, hydrofluoric acid etching, surface treatment, thermocycling, vitreous ceramics