We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry
Login:
username:

password:

Plattform:

Forgotten password?

Registration

J Adhes Dent 18 (2016), No. 6     3. Jan. 2017
J Adhes Dent 18 (2016), No. 6  (03.01.2017)

Page 483-492, doi:10.3290/j.jad.a36918, PubMed:27695716


Surface Characterization and Short-term Adhesion to Zirconia after Ultra-short Pulsed Laser Irradiation
Esteves-Oliveira, Marcella / Jansen, Patrick / Wehner, Martin / Dohrn, Andreas / Bello-Silva, Marina Stella / Eduardo, Carlos de Paula / Meyer-Lueckel, Hendrik
Purpose: To evaluate the suitability of an ultra-short pulsed laser (USPL) to treat zirconia ceramic surfaces and increase their adhesion to dual-curing resin cement.
Materials and Methods: Twenty 10 × 10 × 5 mm³ blocks were prepared from a zirconia ceramic (Y-TZP). The specimens were polished and randomly assigned to four groups (n = 5) which received the following surface treatments: sandblasting (SB) with Al₂O₃ particles and silica coating (SC) with SiO₂ particles as positive controls; two groups received USPL irradiation, one with 10 scan repetitions (L10) and the other with 20 (L20). Laser irradiation was performed at 1030 nm, 2.3 J/cm², 6 ps pulse duration. The ceramic blocks were duplicated in composite resin and cemented with a dual-curing resin cement. Half of the blocks were then stored in water (37°C) for 24 h and the other half for 1 month. At each time, 40 to 60 sticks per group were subjected to microtensile bond strength testing. Data were analyzed statistically using the Kruskal-Wallis test (α = 0.05).
Results: Laser-treated zirconia presented statistically significantly higher roughness than did SB and SC. After 24 h, the highest bond strength means (MPa) were achieved by L10 (42.3 ± 10.8) and L20 (37.9 ± 14.4), and both of them were statistically significantly higher than SB (22.0 ± 5.3) and SC (20.8 ± 7.1) (p < 0.05). After 1 month of storage, L10- and L20-treated zirconia still showed significantly higher bond strengths than did SB- and SC-treated zirconia (p < 0.05).
Conclusion: USPL irradiation significantly increases bond strength of zirconia ceramic to dual-curing resin cement and might be an alternative for improving adhesion to this material.

Keywords: yttria-stabilized tetragonal zirconia polycrystal, luting, laser, sandblasting, silica coating, roughness