We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry
Login:
username:

password:

Plattform:

Forgotten password?

Registration

J Adhes Dent 18 (2016), No. 3     23. June 2016
J Adhes Dent 18 (2016), No. 3  (23.06.2016)

Page 205-213, doi:10.3290/j.jad.a36133, PubMed:27200430


Quantitative Evaluation of MDP-Ca Salt and DCPD after Application of an MDP-based One-step Self-etching Adhesive on Enamel and Dentin
Yokota, Yoko / Fujita, Kou Nakajima / Uchida, Ryoichiro / Aida, Etsuko / Aoki, Naoko Tabei / Aida, Masahiro / Nishiyama, Norihiro
Purpose: To investigate the effects of an experimental 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based one-step self-etching adhesive (EX adhesive) applied to enamel and dentin on the production of calcium salt of MDP (MDP-Ca salt) and dicalcium phosphate dehydrate (DCPD) at various periods.
Materials and Methods: The EX adhesive was prepared. Bovine enamel and dentin reactants were prepared by varying the application period of the EX adhesive: 0.5, 1, 5, 30, 60 and 1440 min. Enamel and dentin reactants were analyzed using x-ray diffraction and solid-state phosphorus-31 nuclear magnetic resonance (31P NMR). Curvefitting analyses of corresponding 31P NMR spectra were performed.
Results: Enamel and dentin developed several types of MDP-Ca salts and DCPDs with amorphous and crystalline phases throughout the application period. The predominant molecular species of MDP-Ca salt was determined as the monocalcium salt of the MDP monomer. Dentin showed a faster production rate and greater produced amounts of MDP-Ca salt than did enamel, since enamel showed a knee-point in the production rate of the MDP-Ca salt at the application period of 5 min. In contrast, enamel developed greater amounts of DCPD than did dentin and two types of DCPDs with different crystalline phases at application periods > 30 min. The amounts of MDP-Ca salt developed during the 30-s application of the EX adhesive on enamel and dentin were 7.3 times and 21.2 times greater than DCPD, respectively.
Conclusion: The MDP-based one-step adhesive yielded several types of MDP-Ca salts and DCPD with an amorphous phase during the 30-s application period on enamel and dentin.

Keywords: one-step self-etching adhesive, MDP, calcium salt of MDP, nuclear magnetic resonance, x-ray diffraction