We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


J Adhes Dent 18 (2016), No. 2     15. Apr. 2016
J Adhes Dent 18 (2016), No. 2  (15.04.2016)

Page 161-171, doi:10.3290/j.jad.a35842, PubMed:27022645

Influence of Light Irradiation Through Zirconia on the Degree of Conversion of Composite Cements
Inokoshi, Masanao / Pongprueksa, Pong / De Munck, Jan / Zhang, Fei / Vanmeensel, Kim / Minakuchi, Shunsuke / Vleugels, Jozef / Naert, Ignace / Van Meerbeek, Bart
Purpose: To assess the light irradiance (LI) delivered by two light-curing units and to measure the degree of conversion (DC) of three composite cements and one flowable composite when cured through zirconia or ceramic-veneered zirconia plates with different thicknesses.
Materials and Methods: Three dual-curing composite cements (Clearfil Esthetic Cement, Panavia F2.0, G-CEM LinkAce) and one light-curing flowable composite (G-aenial Universal Flo) were investigated. Nine different kinds of zirconia plates were prepared from three zirconia grades (YSZ: Aadva and KATANA; Ce-TZP/Al2O3: NANOZR) in three different thicknesses (0.5- and 1.5-mm-thick zirconia, and 0.5-mm-thick zirconia veneered with a 1.0-mm-thick veneering ceramic). Portions of the mixed composite cements and the flowable composite were placed on a light spectrometer to measure LI while being light cured through the zirconia plates for 40 s using two light-curing units (n = 5). After light curing, micro-Raman spectra of the composite films were acquired to determine DC at 5 and 10 min, 1 and 24 h, and at 1 week.
Results: The zirconia grade and the thickness of the zirconia/veneered zirconia plates significantly decreased LI. Increased LI did not increase DC. Only the Ce-TZP/Al2O3 (NANOZR) zirconia was too opaque to allow sufficient light transmission and resulted in significantly lower DC.
Conclusion: Although zirconia-based restorations attenuate the LI of light-curing units, the composite cements and the flowable composite could be light cured through the YSZ zirconia. LI is too low through Ce-TZP/Al2O3 zirconia, necessitating the use of self-/dual-curing composite cements.

Keywords: zirconia, degree of conversion, micro-Raman, light spectrometer, light-curing unit, composite cement