We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


J Adhes Dent 17 (2015), No. 3     13. Aug. 2015
J Adhes Dent 17 (2015), No. 3  (13.08.2015)

Page 243-248, doi:10.3290/j.jad.a34399, PubMed:26114163

Influence of Curing Units and Indirect Restorative Materials on the Hardness of Two Dual-curing Resin Cements Evaluated by the Nanoindentation Test
Kuguimiya, Rosiane Noqueira / Rode, Kátia Martins / Carneiro, Paula Mendes Acatauassú / Aranha, Ana Cecilia Corrêa / Turbino, Miriam Lacalle
Purpose: To evaluate the hardness of a dual-curing self-adhesive resin cement (RelyX U200) and a conventional dual-curing resin cement (RelyX ARC) cured with different light curing units of different wavelengths (Elipar Freelight 2 LED [430 to 480 nm, conventional], Bluephase LED [380 to 515 nm, polywave], AccuCure 3000 Laser [488 nm]) by means of the nanoindentation test.
Materials and Methods: Bovine incisors were cleaned and then sectioned at the cementoenamel junction to remove the crown. After embedding in acrylic, dentin surfaces of the specimens were exposed and ground flat to standardize the surfaces. To simulate clinically placing indirect restorations, ceramic (IPS e.maxPress/Ivoclar Vivadent) or indirect composite resin (SR Adoro/Ivoclar Vivadent) slabs were cemented on dentin surfaces. The specimens were sectioned longitudinally at low speed under constant irrigation and then polished. In the positive control group, the cement was light cured without the interposition of indirect restorative material; in the negative control group, after the indirect restorative material was cemented, no light curing was performed, allowing only chemical polymerization of the cement. All specimens were stored in distilled water at 37°C for 7 days. Nanoindentadion hardness of the cement layer was measured under a 100-mN load. Data were statistically analyzed using ANOVA and Tukey's test (p < 0.05).
Results: Although the self-adhesive cement is technically simple, conventional cement showed the best polymerization performance. The polywave LED technology did not differ significantly from other light-curing units. The hardness of the resin cements evaluated was negatively influenced by the interposition of an indirect restorative material; only the LEDs were able to maintain the same degree of cement polymerization when an indirect restorative material was used.
Conclusion: The photoactivation step is required during the cementation of indirect restorations to ensure adequate polymerization of dual-curing resin cements.

Keywords: self-adhesive resin cement, hardness, nanoindentation, polymerization