We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The Journal of Adhesive Dentistry



Forgotten password?


J Adhes Dent 15 (2013), No. 5     15. Oct. 2013
J Adhes Dent 15 (2013), No. 5  (15.10.2013)

Page 413-422, doi:10.3290/j.jad.a29534, PubMed:23560259

Biomimetically- and Hydrothermally-grown HAp Nanoparticles as Reinforcing Fillers for Dental Adhesives
Wagner, Andrea / Belli, Renan / Stötzel, Christian / Hilpert, Andrea / Müller, Frank A. / Lohbauer, Ulrich
Purpose: Differently prepared hydroxyapatite (HAp) nanoparticles were incorporated into the adhesive solution of a commercial adhesive system in order to evaluate the effect on microtensile bond strength to dentin.
Materials and Methods: HAp nanoparticles (20 to 70 nm) were prepared by different processes (biomimetic and hydrothermal) and incorporated into the adhesive of the Adper Scotchbond Multi-Purpose (SBMP) system at various concentrations. Control (unfilled) and experimental groups (filled) were applied onto flat mid-coronal human dentin. Composite crowns were built up and cut into beams with a cross-sectional area of 0.65 ± 0.05 mm2. Specimens were fractured in tension and examined with a scanning electron microscope (SEM) for fractographic analysis. Microtensile bond strength (µTBS) data were analyzed using a two-way ANOVA and modified LSD test at a = 0.05. Analysis of the nanofiller distribution and ultramorphological characterization of the interface was performed by transmission electron microscopy (TEM).
Results: HAp nanoparticle incorporation into the adhesive of SBMP significantly influenced µTBS to dentin depending on the fillers and the concentration used. A significant increase of the mechanical strength was obtained for the adhesives containing 1% (wt/vol) biomimetic and 5% hydrothermal silanized HAp particles, while the other particle fractions did not influence µTBS significantly. 10% (wt/vol) HAp particles significantly lowered the µTBS irrespective of the particle type used. TEM micrographs revealed nanoparticle dispersion through the adhesive layer but no deposition on or penetration into the hybrid layer.
Conclusions: HAp nanoparticle incorporation into SBMP increased bond strength to dentin by cohesively reinforcing the interface adhesive layer. At a concentration of 10% (wt/vol), nanofiller incorporation had a negative effect on bond strength.

Keywords: HAp, biomimetic and hydrothermal HAp preparation, silanization, adhesion, nanoparticle filler, dentin bonding, tensile bond strength